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ANALYSIS OF THE PARADOX OF THE INTERACTION OF A VORTEX FILAMENT WITH A PLANE+' 

M.A. GOL'DSHTIK and V.N. SHTERN 

It will be shown that the crisis occurring in the interaction of a 
vortex filament with a plane perpendicular to it, consisting of the 
failure of the solution to exist at a finite Reynolds number, is due to 
the formation of an extremely intense induced jet in the axial region. 
External and internal expansions are constructed for the near-critical 
situation, yielding an exhaustive characterization of the structure of 
the solution. It is observed that if the circulation is specified not 
on the axis but on a finite-angled cone, the solution continues to 
exist at all Reynolds numbers. The vortex filament is considered as a 
limiting case of a cone. 

The interaction of a vortex filament with a plane has been studied in many publications, 
beginning with /l/, where a paradoxical fact was established: a solution with bounded 
meridian velocity exists at Reynolds numbers not exceeding a certain critical value, ceasing 
to exist at higher Reynolds numbers. A detailed exposition of these results and a survey of 
the literature up to 1980 can be found in /2/. As shown in this paper, the source of the 
paradox is that the axis of symmetry lies in the flow region. The motion under consideration 
may be interpreted as being generated by a rotating needle at right angles to the plane. In 
this case, however, since the dimensions of the needle are finite, its immediate vicinity is 
a region of non-selfsimilarity, which remains outside the scope of the discussion. 

Serrin /3/ assumed that the longitudinal component of the velocity has a logarithmic 
singularity along the axis, treating the coefficient of the logarithm as a parameter in 
addition to the circulation. Serrin showed that the plane of these parameters contains a 
curve which bounds the region of existence of the solutions of the class in question. The 
value of the codfficient of the logarithm was determined by postulating an additional 
hypothesis of a Phenomenological nature. 

In this paper a different approach is taken. The flow nucleus is situated in a 
small-angled cone, on whose surface the circulation and other appropriate boundary conditions 
are given. The angle is then allowed to approach zero. The longitudinal component of the 
velocity of the external flow remains bounded, but in the critical situation a singularity 
forms along the axis - a linear sink of well-defined strength. At supercritical Reynolds 
numbers the passage to the limit of a vortex filament produces the same external flow, 
identical with the critical flow. 
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1. Statement of the problem and basic equations. We consider the steady axisym- 
metric flow of a viscous incompressible liquid, generated by a semi-infinite vortex filament 
of given circulation 2nl?,. The filament rests against a fixed plane, on which 
the adherence conditions must hold. A generalization of this situation is a vortex-sink 
combination flow on an impermeable cone with half-angle A,. 

In a spherical system of coordinates r,e,cp with a pole at the end of the vortex 
filament or the apex of the cone, the velocity field corresponding to a selfsimilar solution 
of the problem may be written as 

(1.1) 

Here y (z) is an unknown non-dimensional function, related to the stream function Y by the 
equation Y = vry and r (5) is the unknown non-dimensional circulation, related to the 
given (dimensional) circulation by the equation r1 =vI'(xJ = vRe, where Re = I',iv is the 
Reynolds number. 

Since in this formulation of the problem no reference length, only r1 - which has the 
dimensions of kinematic viscosity - is given, the representation (1.11 must be selfsimilar: 
if a solution exists, it is selfsimilar /4/. Substitution of (1.1) into the Navier-Stokes 
equations (see, e.g., /2/) gives 

(1 _ "2)2y"" - 4~ (1 - ~2) y" = l/2 (1 - 52) (~2)" + zrr’ (1.2) 
(I - 9) ru = g (1.3) 

Thus, the entire variety of problems in this selfsimilar class reduces to the solution 
of system (1.2), (1.3) with appropriate boundary conditions. 

The most general boundary-value problem is obtained if one sets boundary conditions on 
the conical surfaces I = 21 and z=z*,- l<x,<x,<1. For example, one might specify 
the velocity vector on cones x1, 4 # f 1 in the context of (1.1). In that case the coef- 
ficients of Eqs.(1.2), (1.3) have no singularities in the interval of integration. And 
although the general theorems of existence for steady-state solutions /5, 6/ do not apply to 
the selfsimilar class (l.l), there is no doubt that the problem is solvable - at least, for 
small Reynolds numbers. When one of the semi-axes lies in the flow region, the coefficients 
of the highest-order derivatives vanish at 1x1 = 1. As will be shown later, this circum- 
stance may radically affect the properties of the boundary-value problem and its solvability. 

In the situation under discussion there are two alternative approaches: one either 
treats the axis as the interior of the flow region, in which can analyticity conditions are 
formulated on it; or one continues to view the axis as the flow boundary, containing the 
source of motion, in which case one has a well-defined singularity along the axis. A 
distinct case is the problem of an unbounded region in which the flow is generated by a 
source of momentum at the origin (Landau jet /7/). Thus, the flow may be determined either 
by boundary conditions or by a point source. The two cases, incidentally, are mutually 
exclusive. 

However formulated, the problem is clearly over-determined, which is rather at variance 
with one's intuitive concepts of the independence and compatibility of such sources of 
motion in real jets. Indeed, for a jet emerging from a hole in a wall one can independently 
determine both the momentum flux from the hole and the velocity field at the wall, such as 
adherence conditions. However, it turns out that this cannot be done in the limiting case 
of a infinitely small hole; indeed, by a theorem of Sedov, the solution must be selfsimilar 
and belong to class (l.l),but since the problem is over-determined no such solution exist. 
This means that, apart from Landau's solution, there are no selfsimilar flows generated by a 
point source of momentum. But then it is natural to consider the jets induced by the motion 
of the boundaries as induced jets. 

2. The properties of the solutions and critical phenomena.~t will be convenient to define 
a function F as follows: 

F'" = 2rr'/(f - X2) (2.1) 

Then Eq.tl.2) can be integrated three times: 

(1 - z") y' + 2XY - lily* = F + C, + C,x - C# (2.2) 

Eq.(1.3) can also be integrated: 

r = S exp {S 2sd~) dz, s = Vpy/(l - s*) (2.3) 
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where, by (2.2), S(z) satisfies the equation 

S' - S" = 'i, (F + c, + c,s - C$)l(1 - X2) zz CD (2) (2.4) 

The paradoxical properties observed in solutions of the class under consideration are 
due to the fact that Eq.(2.4) with the above function (D(x) is the canonical Ricatti 
equation, and therefore S(X) may have poles even in regions where the right-hand side is 
continuous. If variation of the parameters brings a pole into the range of allowable values 
of I, the solution of the boundary-value problem ceases to exist. hs the pole approaches 
this range, boundary layers are formed. 

In this paper we concentrate our attention on the critical phenomena occurring when the 
pole crosses the end of the range at finite Reynolds numbers. To be precise, we have in 
mind a situation in which all quantities in the boundary-value problem remain bounded, while 
the solution itself becomes unbounded. It turns out that a crisis of this kind is possible 
only if the axis Ix 1 = 1 falls in the region of integration. 

Considering the case in which the boundary condition at Z--Z, is the impermeability 
condition g(tl)= 0, let us convince ourselves that the pole cannot cross the boundary if 
Is,I=!= 1. Substituting S= --‘IT into Eq.(2.4), we obtain T”+ ~(x)T=O. If @ (2) is 
bounded, it follows from Sturm's Theorem that the roots of T(X) and T' (J) alternate and 
are simple. Indeed, if l' and 2" vanish at one and the same x, then TzO. Consequently, 
the zeros and poles of the function Y(X) have the same properties. 

Now a pole can cross the boundary Z= xX, i.e., a pole and a root can coincide, only 
if a@) becomes infinite at S= x1. Since /~~[#l,the numerator of expression (2.4)‘ which 
characterizes the sources of the motion must become infinite. Thus, if the sources of the 
motion, as determined by the boundary conditions, are bounded, the same is true of the sol- 
ution. 

This is not so if the axis falls in the flow region. In that case a crisis may occur at 
a finite Reynolds number, as can be shown by considering a few known exact analytic solutions. 

Let us consider a typical case for the class (1.1) - the problem of a sink in a plane, 
Suppose that a region filled with a visous liquid contains a plane made of material 
contracting without rotation to a centre, which is a sink of strength 2nQV so that in the 
plane vl. = -Q/r, ~a = uV = 0. The liquid motion induced by the contracting plane is necessarily 
selfsimilar and of class (1.1). On the axis == 1 we impose the analyticity conditions: 
Y (1) = 0, Y' (I), Y”(i) are bounded, and using (2.2) we find that C,= X',,C,= A',. Consequently, 
Eq.(2.2) may be rewritten in this case as 

(1 - .z*) y' + 2ry =Vsy2 - c, (i - f)a (2.5) 

The constant C, is determined from (2.5) and the condition y(o)=O. By (l.l), we have 

C1 = -8~’ (0) = -Q/v-_= --Re 

For Re>V, the solution of Eq.(2.5) is 

2 Re(l--+) 
y = y ctg['/*I'In(1 + z)] - 1 ’ y=1/2Re (2. 6) 

This solution is actually due to Squire /S/, though in the context of a different inter- 
pretation. For a value of y satisfying the equation tg(i/2yln2)=y, i.e., for Rez 7.67, 
the denominator of the right-hand side of (2.6) vanishes at z--1. When that happens the 
root and pole coincide at the point Z= 1, the number y(i) becomes finite and by (2.6) it 
is equal to 4. The limiting external value of Y+ (2) is analytic, but its physical meaning 
is a sink of strength 8%~ uniformly distributed along the axis. 

In the near-critical situation a narrow internal region of high velocities is formed 
around the axis - a strong jet zone. In this zone y falls from nearly 4 at the boundary to 
zero on the axis, while y' takes large negative values. 

We introduce a small parameter E and a new independent variable '1: 

E = ---l/y' (1), 9 = (f - z)/e (2.7) 

Using the relationship us'= -~~'/e, we obtain from Eq.(2.5) 

--'1 (2 - Eq) Yn’ + 2 (1 - ql) Y = v*y* - eye, 

Letting e go to zero, we obtain an equation for the principal term of the expansion of 
the axial boundary layer: 

qy *' = y+ (1 - y&:4), y’ (0) = 0 rt 
W) 

which yields Schlichting's solution ,q* = 4~$(4+ q). 191. 
It should be noted that this boundary-layer solution corresponds to an internal 

expansion and does not depend on c,. Since the only essential conditions for Schlichting's 
solution are regularity on the axis and the existence of a boundary layer, it approximates a 
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broad range of jet-type flows near the axis. Returning to the original variables, we can 
write it as 

!I* C.1.) --4y' (1) (1 -~ II [4 ~ !/' (1) (1 - z)j 
(2.9) 

As an external expansion Y, (4 in this problem one obtains the solution (2.6) itself 
in the critical situation. 

Thus, this example, considered together with Squire's solution, clearly demonstrates 
the formation of an extremely strong jet and a crisis of flow at finite Reynolds numbers. 
Moreover, this crisis is unremovable. In physical terms, it means that the nucleus of the 
jet will always become turbulent. 

If one assumes adherence conditions Y(O) = Y'(0) = 0, with y' (1) bounded, the external 
solution Y, (x) in the critical case satisfies the condition y* (1) == 4 and the equation 

/lO/ 
(1 - z?) y,' + 2xy* .-z '/,y*" + C,x (1 - x) (2.10) 

The value C, z 15.29 is found by integration from the axis using the condition Y,(O) : 
0. Graphically, Y, can be approximated by a cubic polynomial whose coefficients are deter- 
mined by the boundary conditions: 

Y* zz z? [4 + (6 - CJ4) (1 - x)1 (2.11) 

3. Crisis in the Qaterspout” problem. The interaction of a vortex filament 
with a plane is described in the context of the selfsimilar class (1.1) and reduces /l, 2/ 
to the solution of a boundary value problem for Eqs.(l.3), (2.1), (2.2), assuming adherence 
conditions on the plane and regularity of the meridian velocity field at the axis for a given 
circulation. It has been proved /l, 2/ that if the Reynolds number Re == I',!v exceeds the 
critical value Re,z 5.53, there is no longer a selfsimilar solution satisfying these con- 
ditions. Below, we shall investigate the structure of the solutions in a neighbourhood of 
Re = Re, - Q, 0< e, ((I# subsequently considering the problem when the circulation is 
given on a finite-angled cone. If the angle is zero the problem reduces /2/ to Eq.cl.3) 
with boundary conditions r (0) = 0, r (1) = Re and the equations 

(1 - x2) y' + 2zy - '/zy2 -= 1/2 Re2 x (1 - X) - G (x) (3.1) 

G (x) = (1 - x)” { & dt + 22 :j + dt 
; 

y (0) == y' (0) = y (1) = 0 

As Re+Re, the circulation tends to zero everywhere except on the axis itself /2/ - 
this is also illustrated by numerical calculations /II/. It then follows directly from (3.2) 
that G(x)+ 0 as Re-tRe,. Hence, as far as the principal term of the external expansion 
with respect to e1 is concerned, the function G (2) on the right of Eq.(3.1) may be 
ignored, and Eq.(3.1) reduces to (2.10) with the renamed constant C, = Ree2/2. This implies 
a relationship between the critical Reynolds number and the value of the constant C1 in 

(2.10): Re, = I/El ~5.53. Thus, the external expansion reduces to an expression describing 
the meridian flow generated by the sink along the axis, which is precisely the solution 

Y, (x1. 
As for the internal expansion, it can be shown (see /2/l that the right-hand side of 

(3.1) has a zero of more than the first order at *=I, so that here too the equation for 
the meridian motion splits when one is determining the principal terms. The principal term 
turns out to be the solution of (2.9) (the Schlichting jet). To obtain the boundary-layer 
solution for the circulation it is again convenient to use the small parameter e= --l/y'(l) 
and the variable q= (I -X)/E. Then, from (2.9) and (1.31, using the boundary conditions 
1‘ (m) = 0, r (0) := Re , one obtains 

r* = 4He/(4 + q) = 4Rei14 - I/' (1) (i - z)] (3.3) 
1',*' = -4Re y' (1)/[4 - y’ (1) (1 - r)j2 

Since the external expansion for the circulation is trivial: ~,(z)Eo, the internal 
expansion can be continued up to the wall x=0, at the same time satisfying the corrected 
boundary condition r = o at 2~0. Then I'* = 4He 2114 - I/' (i) (1 - x)]. 

The small parameter e vanishes together with e,= Re,--Re. Indeed, at He = Re, the 
pole of y(2) passes through the point I= 1, and therefore for small 81 the position 
of the pole zP is approximately determined by the condition zP = i +A.Q, A >O. On the other 
hand, the solution y* defined by (2.9) may be rewritten as y* = 4(1 -z);L1 -z-44iy'(i)l, the 
position of the pole zP* =I-4/y'(i) for small Ed must coincide with zP. whence it follows 
that y' (1) = 4/[A (Re - Re,)l + 0 (1). 
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Fig.1 illustrates the results obained by integrating equations (1.31, (3.1) and (3.2) 
at Re = 5.47, which is near the critical value; in this case g'(i)= -460.5. (According to 

the data of /9/, in the case of a developed axisymmetric turbulent jet the turbulent viscosity 

VT develops in such a way that ru,iv, = --y' (1) = 460.5.) The figure compares the numerical 

results (the solid lines) with the analytic solutions (the dashed lines). Curves 1 and 2 
represent the internal solution Y*,r* and the external solution r. respectively (see 

(2.9), (3.31, (2.11), and curve 3 the uniform asymptotic approximation ya.= Y* + y1 -4. With 

increased distance from the axis the circulation decreases more slowly than in the boundary- 
layer approximation (3.3). This is due to the discrepancy between Y* and Y far from the 
axis. 

Fig.1 Fig.2 

A good measure of the intensity of rotational motion near the plane is the quantity 
a 3 P (0). The function a(&) (Curve 1 in Fig.21 is not monotone. As the circulation of 
the vortex filament increases, the rotation near the plane first becomes stronger and 
subsequently decays, finally vanishing at Re=Re,. Computations indicate that the derivative 
da/d Re is finite at Be= Re, - its approximate value is -6.2. 

This non-monotonic behaviour is due to the competition between two mechanisms of vorticity 
transfer - viscous diffusion and convection, For small Re values diffusion predominates, 
and therefore an increase in circulation (Re) on the axis causes an increase in circulation 
throughout the flow region. As Re increases, the drift of liquid towards the axis and the 
resulting inverse transfer of vorticity by convection are intensified. At Re values near 

Re, the convective mechanism prevails, the circulation concentrates near the axis but 
diminishes far from the axis. Finally, at Re= Re, one has a catastrophe: irrespective of 
the presence of circulation on the axis, the liquid outside the axis does not rotate: a 
"collapse" of circulation occurs. But this is not the case for the pressure field generated 
by the vortex filament. The rarefaction on the axis creates a sink whose interaction with 
the plane generates an extremely intense jet. 

4. A %uterspout" with a conical nuc2eus. The paradoxical situation in which 
the solution of the Wavier-Stokes equations ceases to exist at a finite Reynolds number 
occurs when there is a singularity along the axis in the form of a vortex filament. The 
question arises, how does the situation change if the axis is excluded by imposing suitable 
boundary conditions on a finite-angled cone? The problem reduces to solving the system of 
Eqs.f1.3), (2.1) and (2.2) with adherence conditions on the plane, Y(0) = Y'(0) = r(0) = 0. 
On the cone x=x, one imposes the impermeability condition y(x,)= 0 and the circulation 
is given: I' (zJ = Re. A sixth boundary condition was imposed in two versions: adherence 

(Y' 6521) = 0) and slip (Y" (5J = 0). 
In numerical computations the integration was carried out from the wall to the axis, 

with the function F satisfying the conditions F(O)= F' (O)= F"(O)= 0. Then, by (2.2) and 
the adherence conditions at the wall, C, = 0. For the integration one also needs the values 

of C,, C, and a 3 I" (0). 
conditions on the cone. 

Two of these three parameters must be chosen so as to satisfy two 
One of these conditions is y(s,)= 0, the other, in the case of 

adherence, is F(r,) + C,s, - C,r12 = 0 
2&x, = 0. 

by (2.2), and in the case of slip it is F'(x,)+ C,- 
The remaining parameter is a measure of the intensity of the flow, playing the 

role generally given to the Reynolds number. The Reynolds number itself is found after the 
problem has been solved: Re =r (q). It is convenient to leave free some parameter that 
depends monotonically on Re. As is clear from Fig.2, the parameter a is not appropriate in 
this sense; either of the parameters C,,C, will do. 

Figs.2-4 present the results of the computations. (The curves correspond to the follow- 
ing values: Curve 1 - z,== 1; Curve 2 - ~,=0.99, curve 3 - x1 = 0.999, all with adherence 
conditions; Curves 2; 3'- the same figures but with slip conditions). First, the results 
indicate that if the angle of the cone is finite, a solution exists at all Reynolds numbers, 
regardless of whether the conditions at the cone are adherence or slip. Second, here too, 
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owing to the competition between diffusive and convective transfer of vorticity, the 
intensity of rotational motion near the plane is a non-monotone function of the circulation 
at the cone. As the Reynolds numberincreases,the rotation is first intensified and then 
weakens. However, unlike the case of a vortex filament, the rotation does not disappear at 
finite Reynolds number, tending only asymptotically to zero as the Reynolds number goes to 
infinity. 

If the Reynolds number is fixed and the angle of the cone is decreased, the limiting 
solution at Re<Re, is that corresponding to a vortex filament. By (3.1), in this case 
C, = C, = R&Z (Curve 1 in Fig.3). When R~>RR~,, and 'l-1, one has a + 0; C,, L', -+ He,?12. 
Outside the boundary layer the rotational motion disappears and the meridian flow becomes 
the same as at He- Re,. 

Fig.3 Fig.4 

As is evident from Fig.4, which shows the results of computations carried out for He= 20, 

Y (x) at supercritical Reynolds numbers tends to Y*(Z) (Curve 1) non-monotonically. The 
limiting solution s,*l stabilizes very slowly, though this occurs more rapidly in the case 
of slip conditions (Fig.2). 

In view of the results for these limiting cases, it may be assumed that the solution of 
the vortex filament problem can be continued into the region ~e>~e,, to which end one must 
put a = 0, C, = C, = Re,*/2. However, the boundary condition y(l)= 0 is "eroded" and must be 
replaced by the condition y(l)== 4. A sink thus forms along the vortex filament, of strength 
independent of the circulation - it is equal to Q*. 

5. Discussion. The paradox presented by the non-existerce of a solution for a 
finite Reynolds number /l/ has been resolved here by regularization of the singularity along 
the axis of symmetry. If the vortex filament is replaced by a vortex cone a solution exists 
for arbitrary Reynolds numbers. Since a vortex filament is essentially an idealization of 
real sources of flow, of finite dimensions, the approach proposed above is quite natural. 
The generalization proposed in /l/ for Serrin's formulation of the problem /3/ offers more 
possibilities of simulating atmospheric waterspout phenomena, though it is not essential for 
resolving the paradox. 

Though the paradox has been eliminated there remains an interesting physical effect: 
focussing of rotational motion near the axis of symmetry and the formation of a strong 
rising jet. If a thin needle is rotated perpendicular to the plane, then at large distances 
compared with the radius of the needle the motion takes place in accordance with a 
selfsimilar solution. As the angular velocity of the needle is increased, the rotational 
motion of the liquid in the selfsimilar region will first intensify, but subsequently fall 
sharply to zero. At supercritical Reynolds numbers the rotational and jet motion is 
concentrated in the non-selfsimilar zone near the needle. In the selfsimilar region, 
however, the motion ceases to depend on the angular velocity of the needle and is the same 
as if it were generated by a sink of strength Q+ uniformly distributed along the axis. 
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Formal asymptotic expansions of the solution of the stationary 
problem of the thermocapillary flow of fluid in an unbounded region, 
with the free boundary unevenly heated, are constructed for large 
values of the Marangoni number. A non-linear boundary layer is formed 
near the free surface, and selfmodelling solutions are found for this 
layer near the critical point. A slow flow outside the boundary layer 
satisfies the equations of an ideal fluid. An equation describing the 
free boundaxy is obtained. When the temperature gradient vanishes, 
this equation becomes the well-known equation of the equilibrium of the 
free boundary of a capillary fluid. Numerical computations are carried 
out to determine the form of the meniscus at the vertical solid wall, 
the free boundary of the fluid poured onto a horizontal surface for the 
plane and axisymmetric case, and the surface of a gas bubble adjacent 
to the wall in a heated fluid. 

The non-linear equations of the stationary boundary Marangoni layer near the free 
boundary of a fluid unevenly heated because of the thermocapillaryeffect were formulated in 
/l/ and studied earlier /2-61. Asymptotic expansions of the solution of the stationary 
Problem of a low-viscosity fluid flow under the action of tangential stresses were 
constructed in /7/. 

1. Consider the stationary problem of the flow of an incompressible fluid in an 
unbounded region D under the action of thermocapillary forces caused by uneven heating of the 
free surface l', for the system of Navier-Stokes equations, with vanishing viscosity Y-+0 

(v.V)v=...-p-'Vp+~Av+g,divv=O 

p = kpn-rr*n -I- a(%, -i-x,)+ P*t 2voll.n - 
2~p (n.ll*n) n = V,O, (2, 9, 2) E r; v-n Ir = 0, V k = 0 

(1.1) 

(1.2 


